How Cloud Analytics Empowers Energy Companies

Energy Tech Review | Friday, July 26, 2019

More in News

Predictive maintenance (PdM) has significantly enhanced asset performance, minimized downtime, and reduced operational costs in the oil and gas industry.  Key Advancements in Predictive Maintenance Artificial Intelligence (AI) and Machine Learning (ML): AI and ML are remodeling predictive maintenance by introducing sophisticated algorithms, such as neural networks and random forests, which enable the creation of accurate predictive models for forecasting equipment failures. These models analyze extensive sensor data to detect patterns and anomalies indicative of potential issues. Real-time anomaly detection powered by AI further enhances operational reliability by enabling immediate interventions to prevent critical failures, reducing unplanned downtime and disruptions. Additionally, AI-driven predictive analytics leverage historical and real-time data to estimate the remaining useful life of equipment components, optimizing maintenance schedules and minimizing unnecessary interventions. Internet of Things (IoT) and Sensor Technologies: IoT-enabled sensors facilitate real-time monitoring of key parameters such as temperature, vibration, pressure, and flow rates, offering comprehensive insights into equipment health. The advancement of specialized sensors, including acoustic emission sensors and infrared thermography cameras, has enhanced the precision of condition monitoring. Coupled with edge computing capabilities, IoT devices can process data locally, reducing latency and improving transmission efficiency. Digital Twins: Digital twin technology, which creates virtual replicas of physical assets, empowers engineers to simulate and analyze asset performance under various conditions. These virtual models support predictive simulations to optimize maintenance strategies and scenario analyses that identify potential failure modes. Organizations can develop proactive maintenance plans to enhance asset performance and longevity by leveraging digital twins. Cloud Computing and Big Data Analytics: Cloud-based platforms offer scalable solutions for storing vast amounts of sensor data, facilitating advanced analytics through powerful tools for data mining, machine learning, and predictive modeling. By analyzing extensive datasets, organizations can derive actionable insights into equipment performance, uncover opportunities for improvement, and enhance decision-making. Benefits of Predictive Maintenance in the Oil and Gas Industry Predictive maintenance offers significant advantages to the oil and gas sector, including reduced downtime through proactive interventions, increased equipment reliability by addressing potential issues early, and optimized maintenance costs through tailored scheduling. Additionally, early hazard detection improves workplace safety while enhancing asset uptime and minimizing disruptions to boost operational efficiency. Predictive maintenance is no longer a concept of the future; it is a transformative reality within the oil and gas industry. By leveraging advanced technologies and data-driven insights, companies can enhance asset performance, minimize downtime, and reduce operational costs. As the industry advances, predictive maintenance will be instrumental in driving sustainability and ensuring the long-term profitability of oil and gas operations. ...Read more
Energy storage advancements, including AI-driven grids, lithium-ion innovations, alternative batteries, green hydrogen, and thermal storage, are enhancing efficiency and sustainability and reducing carbon footprints. FREMONT CA:  Recent advancements in energy storage technology have marked a transformative shift driven by extensive research and development. Innovations spanning battery chemistry, gravity-based systems, and AI-powered energy management are stabilizing energy networks, reducing reliance on fossil fuels, and enhancing the efficiency of renewable energy integration. They also empower industries to meet the growing energy demands while minimizing their environmental footprint. Smart Grid Management and AI-driven Energy Management Systems (EMS) By leveraging real-time data and predictive analytics, smart grids can dynamically adjust to fluctuating energy needs, ensuring that supply matches demand more accurately. They also incorporate advanced technologies like artificial intelligence (AI) and the Internet of Things (IoT) to optimize load balance and anticipate demand.  EMS also uses AI to optimize and regulate energy consumption, leading to significant improvements in grid stability and operational efficiency. Through enhanced control and predictive capabilities, these AI-driven systems contribute to a more reliable and cost-efficient energy infrastructure, supporting sustainability goals and operational performance. Lithium-ion Batteries Innovations such as solid-state electrolytes and high-energy density materials, like silicon anodes, are making lithium-ion batteries lighter, safer, and more durable. These enhancements contribute to longer-lasting power and faster charging times, particularly beneficial in sectors like consumer electronics and electric vehicles. As these batteries become more efficient and reliable, they are increasingly central to developing next-generation technologies that rely on sustainable energy solutions. Alternative Battery Chemistries Alternative chemistries such as sodium-ion and zinc-air batteries are emerging as more affordable and environmentally friendly options to address the limitations of lithium-ion batteries. Zinc-air batteries, for instance, provide reliable, long-lasting, high-energy backup power, making them suitable for applications that require consistent and durable energy sources. Similarly, sodium-ion batteries are specifically designed for large-scale, stationary storage, offering a promising solution for energy grid applications. These innovations are crucial in diversifying energy storage solutions and reducing the environmental impact of battery production. Green Hydrogen and Fuel Cells Green hydrogen serves as a versatile and sustainable option for decarbonizing sectors that are difficult to electrify, contributing to the transition toward a more sustainable energy system. It is produced through electrolysis powered by renewable energy sources, making it an environmentally friendly alternative for energy storage. Fuel cells play a vital role in harnessing green hydrogen, particularly in industries where direct electrification is challenging.  Thermal Energy Storage By storing excess heat, thermal energy storage helps balance supply and demand, enhancing the stability of renewable energy sources. Substances like phase-change materials or molten salts are commonly used to store heat, which can be deployed immediately for heating purposes or converted into electricity when needed.  Unlike other forms of thermal energy, geothermal energy is a renewable resource that depends solely on the Earth's intrinsic heat, making it a sustainable and long-term energy solution. It offers a unique and consistent energy source that can complement other renewable technologies, further contributing to the global transition to sustainable energy systems. As the demand for renewable energy sources continues to grow, these emerging storage solutions are critical to reducing carbon footprints, enhancing power grid stability, and fostering a sustainable economy. By embracing these technologies, we are moving closer to a future where energy is affordable and sustainable, paving the way for progress that will benefit future generations. ...Read more
Many people view the worldwide transition to renewable energy as a strictly "green" endeavor. However, large quantities of raw materials are needed to produce and implement technologies like lithium-ion batteries, wind turbines, and solar panels. The sector is shifting to a Circular Economy in order to prevent a new waste problem. By extending the life of resources and reestablishing natural systems when products reach the end of their useful lives, a circular economy in energy technology substitutes the conventional "take-make-dispose" paradigm. What Are the Core Pillars of Circularity in Energy? The transition toward a circular energy model is anchored in three interrelated strategies that aim to decouple growth from resource depletion. Design for disassembly emphasizes engineering products that can be easily taken apart at the end of their useful life, enabling efficient repair, refurbishment, and material recovery; for instance, using mechanical fasteners instead of permanent adhesives in battery packs allows individual cells to be replaced rather than discarding the entire unit. Material substitution focuses on reducing dependence on scarce or hazardous inputs by replacing materials such as cobalt or lead with more abundant, non-toxic, and recyclable alternatives, thereby improving supply security and environmental performance. Life extension also leverages modular hardware designs and software upgrades to extend the operational lifespan of energy assets, minimizing premature replacement and reducing the overall demand for new manufacturing. Sectoral Innovations and the Circular Feedback Loop Across key energy sectors, circularity is being advanced through targeted innovations that address technology-specific challenges while reinforcing a broader feedback loop between end-of-life and new production. In solar photovoltaics, the projected accumulation of up to 78 million metric tons of panel waste by 2050 has accelerated the shift from basic bulk recycling toward high-value recovery processes capable of extracting silver and silicon for reuse in next-generation cells. In wind energy, although most turbine components, such as steel and copper, are already recyclable, composite blades have historically posed disposal challenges; emerging solutions include recyclable thermoplastic resins and the repurposing of decommissioned blades as structural elements in infrastructure projects. Energy storage systems, particularly batteries, represent a significant opportunity for circularity through second-life applications—where partially degraded batteries are redeployed for stationary storage—and through closed-loop recycling, with advanced hydrometallurgical techniques now achieving recovery rates exceeding 95 percent for critical metals. Underpinning these sectoral advances is an integrated circular feedback loop that spans manufacturing, operation, collection, and recovery: the use of recycled secondary materials reduces reliance on mining, predictive maintenance and digital twins extend asset life, product-as-a-service models ensure manufacturer responsibility and product return, and advanced recycling technologies return high-purity materials into the supply chain, closing the loop and reinforcing system-wide sustainability. A sustainable energy transition requires not only carbon-free power but also responsible management of the materials involved. Designing systems for reuse and recovery now will help prevent today’s green solutions from becoming tomorrow’s environmental burdens. ...Read more
Green technologies are becoming widely used as a result of the world's move away from fossil fuels. But controlling solar panels, wind turbines, and batteries at the end of their useful lives becomes much more difficult with this shift. A circular economy, in which materials are recovered, repurposed, and recycled, must replace the linear take-make-waste paradigm in order to accomplish a truly sustainable energy transition. Mining the Urban Mine in Clean Energy Technologies The rapid growth of electric vehicles, grid-scale storage, and renewable energy infrastructure has increased demand for critical materials, including lithium, cobalt, nickel, graphite, silver, and high-purity silicon. As a result, end-of-life clean energy technologies are now seen as an “urban mine,” providing a secondary resource to supplement or partially replace traditional extraction. Lithium-ion batteries are central to this development. Recycling these batteries addresses both environmental concerns and supply chain risks. Most recycling relies on hydrometallurgy, which uses chemical leaching, and pyrometallurgy, which uses high-temperature smelting to recover valuable metals. Additionally, batteries that have lost about 20 percent of their capacity are often repurposed for stationary energy storage or grid stabilization, thereby extending their useful life before being recovered as materials. A similar circular challenge is emerging in the solar sector as photovoltaic panels typically have a lifespan of 25 to 30 years. As the first large-scale installations approach retirement, they will create significant waste. While these panels are primarily made of glass, aluminum, and plastics, they also contain valuable silver and high-purity silicon in smaller quantities. Historically, recycling efforts have been centered around aluminum frames and glass, though these materials have limited economic value. Battery Technology Source is contributing to the shift toward more advanced chemical processes designed to extract silver and silicon, which both increase recovery rates and improve financial viability. Manufacturers are also embracing circular design principles, creating panels that are easier to disassemble and require fewer permanent adhesives. Wind energy poses a unique challenge. While 85 percent to 90 percent of a wind turbine, mainly the steel tower and copper components, is easily recyclable, turbine blades remain difficult to process. Made from composite materials such as fiberglass or carbon fiber reinforced with epoxy resins, blades are highly durable but hard to break down. New solutions include mechanical grinding to create filler for cement or insulation and chemical recycling methods that recover usable fibers. Some decommissioned blades are also being repurposed as structural elements in bridges, bike shelters, or public infrastructure, offering creative alternatives to disposal. Mehta Tech is at the forefront of advancing energy solutions, focusing on recycling and sustainable materials in clean energy technologies. Why Does Circularity Matter for the Energy Transition? Transitioning to a circular energy economy delivers strategic benefits that extend well beyond waste reduction. From a supply chain perspective, recovering materials from end-of-life batteries, solar panels, and wind turbines reduces dependence on volatile global markets for critical raw materials, enhancing resilience and energy security. Environmentally, circular practices prevent hazardous substances from entering landfills and significantly reduce the carbon footprint of mining, refining, and manufacturing new components. Economically, circularity opens new growth opportunities, supporting the emergence of a “green-collar” workforce focused on collection, logistics, refurbishment, and advanced materials recovery. Together, these advantages position circularity not as a peripheral sustainability initiative, but as a foundational pillar of a secure, low-carbon energy future. Achieving a circular energy economy requires implementing stronger Extended Producer Responsibility (EPR) laws, standardized component labeling, and sustained investment in recycling infrastructure. The objective is clear: future energy systems must avoid perpetuating the environmental impacts of previous models. ...Read more

Read Also

Wind energy boom in Czechia: A Window of Opportunity

Wind energy boom in Czechia: A Window of Opportunity

Stanislav Cetkovsky, Director of Wind Energy Development & Operations, ČEZ
Strengthening Safety and Reducing Emissions Across Our Communities

Strengthening Safety and Reducing Emissions Across Our Communities

Gina Mace, Director of Regulatory Affairs, Summit Utilities, Inc
Achieving Operational Excellence Through Organizational Effectiveness

Achieving Operational Excellence Through Organizational Effectiveness

Earl Berry, Vice President of Engineering, Southern Nuclear
The Future of Electric Utilities

The Future of Electric Utilities

Roderick Conwell, Senior Director of Operations, the AES Corporation
Meeting the Moment: Reliability, Risk and Resilience in a Demand-Driven Energy Future

Meeting the Moment: Reliability, Risk and Resilience in a Demand-Driven Energy Future

Michael Caravaggio, Vice President, Energy Supply, Reliability, EPRI
Advancing Diversity and Inclusion in Southeast Asia

Advancing Diversity and Inclusion in Southeast Asia

Zulfa Ashida Zulkifli, Vice President of Human Resources, Velesto Energy Berhad[KLSE: VELESTO]